Bagheri-Khaligh A, Raziperchikolaei R, Moghaddam ME, 2012. A new method for shot classification in soccer sports video based on SVM classifier. Proc IEEE Southwest Symp on Image Analysis and Interpretation, p.109-112. doi: 10.1109/SSIAI.2012.6202465http://doi.org/10.1109/SSIAI.2012.6202465
Chen CM, Chen LH, 2014. Novel framework for sports video analysis: a basketball case study. Proc Int Conf on Image Processing, p.961-965. doi: 10.1109/ICIP.2014.7025193http://doi.org/10.1109/ICIP.2014.7025193
Chen CM, Chen LH, 2015. A novel method for slow motion replay detection in broadcast basketball video. Multimed Tools Appl, 74(21):9573-9593. doi: 10.1007/s11042-014-2137-5http://doi.org/10.1007/s11042-014-2137-5
Choroś K, Gogol A, 2016. Improved method of detecting replay logo in sports videos based on contrast feature and histogram difference. Proc 8th Int Conf on Computational Collective Intelligence, p.542-552. doi: 10.1007/978-3-319-45243-2_50http://doi.org/10.1007/978-3-319-45243-2_50
Dang ZH, Du J, Huang QM, et al., 2007. Replay detection based on semi-automatic logo template sequence extraction in sports video. Proc 4th Int Conf on Image and Graphics, p.839-844. doi: 10.1109/ICIG.2007.73http://doi.org/10.1109/ICIG.2007.73
Duan LY, Xu M, Tian Q, et al., 2004. Mean shift-based video segment representation and applications to replay detection. Proc 29th IEEE Int Conf on Acoustics, Speech, and Signal Processing, p.709-712. doi: 10.1109/ICASSP.2004.1327209http://doi.org/10.1109/ICASSP.2004.1327209
Ekin A, Tekalp AM, Mehrotra R, 2003. Automatic soccer video analysis and summarization. IEEE Trans Image Process, 12(7):796-807. doi: 10.1109/TIP.2003.812758http://doi.org/10.1109/TIP.2003.812758
Eldib MY, Zaid BSA, Zawbaa HM, et al., 2009. Soccer video summarization using enhanced logo detection. Proc 16th IEEE Int Conf on Image Processing, p.4345-4348. doi: 10.1109/ICIP.2009.5413649http://doi.org/10.1109/ICIP.2009.5413649
Fani M, Yazdi M, Clausi DA, et al., 2017. Soccer video structure analysis by parallel feature fusion network and hidden-to-observable transferring Markov model. IEEE Access, 5:27322-27336. doi: 10.1109/ACCESS.2017.2769140http://doi.org/10.1109/ACCESS.2017.2769140
Javed A, Bajwa KB, Malik H, et al., 2016. An efficient framework for automatic highlights generation from sports videos. IEEE Signal Process Lett, 23(7):954-958. doi: 10.1109/LSP.2016.2573042http://doi.org/10.1109/LSP.2016.2573042
Javed A, Irtaza A, Khaliq Y, et al., 2019. Replay and keyevents detection for sports video summarization using confined elliptical local ternary patterns and extreme learning machine. Appl Intell, 49(8):2899-2917. doi: 10.1007/s10489-019-01410-xhttp://doi.org/10.1007/s10489-019-01410-x
Javed A, Malik KM, Irtaza A, et al., 2020. A decision tree framework for shot classification of field sports videos. J Supercomput, 76(9):7242-7267. doi: 10.1007/s11227-020-03155-8http://doi.org/10.1007/s11227-020-03155-8
Jiang H, Zhang M, 2011. Tennis video shot classification based on support vector machine. Proc IEEE Int Conf on Computer Science and Automation Engineering, p.757-761. doi: 10.1109/CSAE.2011.5952612http://doi.org/10.1109/CSAE.2011.5952612
Kapela R, McGuinness K, O’Connor NE, 2017. Real-time field sports scene classification using colour and frequency space decompositions. J Real-Time Image Process, 13(4):725-737. doi: 10.1007/s11554-014-0437-7http://doi.org/10.1007/s11554-014-0437-7
Li W, Chen SJ, Wang HB, 2009. A rule-based sports video event detection method. Proc Int Conf on Computational Intelligence and Software Engineering, p.1-4. doi: 10.1109/CISE.2009.5366226http://doi.org/10.1109/CISE.2009.5366226
Minhas RA, Javed A, Irtaza A, et al., 2019. Shot classification of field sports videos using AlexNet convolutional neural network. Appl Sci, 9(3):483. doi: 10.3390/app9030483http://doi.org/10.3390/app9030483
Murala S, Maheshwari RP, Balasubramanian R, 2012. Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans Image Process, 21(5):2874-2886. doi: 10.1109/TIP.2012.2188809http://doi.org/10.1109/TIP.2012.2188809
Nguyen N, Yoshitaka A, 2012. Shot type and replay detection for soccer video parsing. Proc IEEE Int Symp on Multimedia, p.344-347. doi: 10.1109/ISM.2012.69http://doi.org/10.1109/ISM.2012.69
Pan H, Van Beek P, Sezan MI, 2001. Detection of slow-motion replay segments in sports video for highlights generation. Proc IEEE Int Conf on Acoustics, Speech, and Signal Processing, p.1649-1652. doi: 10.1109/ICASSP.2001.941253http://doi.org/10.1109/ICASSP.2001.941253
Pan H, Li BX, Sezan MI, 2002. Automatic detection of replay segments in broadcast sports programs by detection of logos in scene transitions. Proc IEEE Int Conf on Acoustics, Speech, and Signal Processing, p.IV-3385-IV-3388. doi: 10.1109/ICASSP.2002.5745380http://doi.org/10.1109/ICASSP.2002.5745380
Raventós A, Quijada R, Torres L, et al., 2015. Automatic summarization of soccer highlights using audio-visual descriptors. SpringerPlus, 4(1):301. doi: 10.1186/s40064-015-1065-9http://doi.org/10.1186/s40064-015-1065-9
Su PC, Lan CH, Wu CS, et al., 2013. Transition effect detection for extracting highlights in baseball videos. EURASIP J Image Video Process, 2013(1):27. doi: 10.1186/1687-5281-2013-27http://doi.org/10.1186/1687-5281-2013-27
Tavassolipour M, Karimian M, Kasaei S, 2014. Event detection and summarization in soccer videos using Bayesian network and copula. IEEE Trans Circ Syst Video Technol, 24(2):291-304. doi: 10.1109/TCSVT.2013.2243640http://doi.org/10.1109/TCSVT.2013.2243640
Tien MC, Chen HT, Chen YW, et al., 2007. Shot classification of basketball videos and its application in shooting position extraction. Proc IEEE Int Conf on Acoustics, Speech and Signal Processing, p.1085-1088. doi: 10.1109/ICASSP.2007.366100http://doi.org/10.1109/ICASSP.2007.366100
Wang DH, Tian Q, Gao S, et al., 2004. News sports video shot classification with sports play field and motion features. Proc IEEE Conf on Image Processing, p.2247-2250. doi: 10.1109/ICIP.2004.1421545http://doi.org/10.1109/ICIP.2004.1421545
Wang JJ, Chang E, Xu CS, 2005. Soccer replay detection using scene transition structure analysis. Proc IEEE Int Conf on Acoustics, Speech, and Signal Processing, p.433-436. doi: 10.1109/ICASSP.2005.1415434http://doi.org/10.1109/ICASSP.2005.1415434
Wang L, Liu X, Lin S, et al., 2004. Generic slow-motion replay detection in sports video. Proc Int Conf on Image Processing, p.1585-1588. doi: 10.1109/ICIP.2004.1421370http://doi.org/10.1109/ICIP.2004.1421370
Wu X, He R, Sun ZN, et al., 2018. A light CNN for deep face representation with noisy labels. IEEE Trans Inform Forens Secur, 13(11):2884-2896. doi: 10.1109/TIFS.2018.2833032http://doi.org/10.1109/TIFS.2018.2833032
Xu W, Yi Y, 2011. A robust replay detection algorithm for soccer video. IEEE Signal Process Lett, 18(9):509-512. doi: 10.1109/LSP.2011.2161287http://doi.org/10.1109/LSP.2011.2161287
Zhao F, Dong Y, Wei Z, et al., 2012. Matching logos for slow motion replay detection in broadcast sports video. Proc IEEE Int Conf on Acoustics, Speech and Signal Processing, p.1409-1412. doi: 10.1109/ICASSP.2012.6288154http://doi.org/10.1109/ICASSP.2012.6288154
Zhao Z, Jiang SQ, Huang QM, et al., 2006. Highlight summarization in sports video based on replay detection. Proc Int Conf on Multimedia and Expo, p.1613-1616. doi: 10.1109/ICME.2006.262855http://doi.org/10.1109/ICME.2006.262855